måndag 27 juli 2009

Möllevångsfestivalen 2009 foto Elin Alvemark










Möllevångsfestival 2009 foto Elin Alvemark







Hela Nybro ska dansa och le på Kristallen

{bildrubrik} För 30-40 år sedan dansades det mycket på Kristallen i Nybro, vilket denna tavla som hänger i foajén minner om.


På 1960 och 70-talet dansade varje lördag runt 1 200 personer på danspalatset Kristallen i Nybro. Sedan ebbade dansbandsvågen ut och sedan dess har någon offentlig dans inte existerat i lokalerna. Men en ny dansbandsvåg är på frammarsch, vilket är en trend som Artisten inte är sena att haka på. Nu satsar de på att locka tillbaka alla danslystna till Kristallen där de bjuder in till en helkväll med både dans, gästartister och god mat för dem som önskar lite mer.

– Nu ska vi försöka vara lite banbrytande och ordna med mer än bara dans. Två timmar innan dansen och uppträdanden dukar vi upp buffén, sedan har vi tänkt oss det hela som en slags blandning mellan Let´s Dance och Sing along. Men det gäller att känna oss fram till vad Nybroborna vill ha, säger Matz Slättman, som tillsammans med "Matsarna" Krantz och Runberg samt Lena Häggbring driver Artisten i Nybro.

INNESTÄLLE FÖR DANSANTA
För 30-40 år sedan vallfärdades folk långväga ifrån för att dansa på Kristallen som var den tidens inneställe för de dansanta. Men tiderna ändras och dansbandseran byttes ut mot discoeran, vilket ledde till att danskvällarna miste sin popularitet. Men med populära TV-program som Dansbandskampen och Let´s Dance har dock intresset för dansen vaknat till liv igen.

Meningen med danskvällen är att flera generationer danssugna ska kunna samlas under samma tak. På scenen kommer under den fyra timmar långa danskvällen sammanlagt 14 personer att stå för underhållningen, vilket inbegriper dansbandet plus nio soloartister och talanger mellan 15 och 40 år. Två av timmarna blir solisternas under ledning av det erfarna femmannabandet Artistenz.

Fem av artisterna är helt nya, även för Artistenz, men Mats Slättman har hört vad de går för och tror mycket på nytillskotten.
– Man måste våga göra något nytt och jag tror att många i Nybro vill gå ut och ta en svängom, så nu hoppas vi på en trevlig danskväll som ska locka till många skratt och minnen. Vi blir nöjda om det kommer runt 300 personer och slår det väl ut är mycket möjligt att det också kan bli en uppföljning, säger Mats Slättman.


FAKTA:
Artistenz femmannaband består av kapellmästaren Mats Runberg som spelat i olika dansband sedan 1970-talet. Kalmarkillen Johan Miedel på elgitarr, en ölänning vid namn Janne Carlsson på gitarr, Emmabodasonen Per Mård på trummor och Orreforsaren och underbarnet Benny Gliding på
keyboard.

Solisterna är:
2008 års kulturstipendiat Anna Jonsson Nybro, Kristin Bäck från Kulturskolan i Kalmar, Lovisa Johnsson från Domkyrkokören i Kalmar, musikalartisten Johanna Gratte Vassmolösa, Frida Nilsson Färjestaden, känd från talangtävlingen och junior Eurovisionsuttagningen, dansbandssångerskan Jessica Johansson, Artistens Cissi Hansson, Sommarkvälls Tomas Pettersson och trubaduren från Halltorp, Jesper Pettersson.

ANN-HELÉNE THÖRNING


Cissi, vem ska baka bullarna?

torsdag 23 juli 2009

Förtydligande m.m.

Förtydligande:
Vi tycker det vore roligt om ni som besöker oss bär andra kläder än de ni bär i detta ögonblick. Om ni har svårt att komma på något roligt kan ni tänka att ni är ett djur. Om ni har halvsvårt att komma på något kan ni tänka att ni ska gå på kalas. Om ni har lätt att komma på något så, ja, bra, ta det!

Fördunklande:
Om ni redan till det yttre uppvisar kraftdjurets skepnad, såsom det upplevs av er i ert astrala medvetande, så kan ni komma som ni är. Vi gläds åt de kaniner, katter, kattungar och kajor som redan besökt oss.

tisdag 21 juli 2009

Kraftkällorna behöver förstärkas!!!

Vi fick just meddelande att forskningsgruppen från forna Sovjetunionen har anlänt. De har ätit gott på Folkets Hus och har tagit en titt på lokalerna i Folkets Park. Flera uttryckte en önskan till er alla att hjälpa till att förstärka kraftkällorna vi behöver för att utforska atmosfären. Försök därför verkligen tänka igenom vilka kraftdjur ni har i den astrala sfären av ert medvetande, och på något sätt under festivalen låta detta synas i er utsmyckning. Återigen, det är alltså av stor vikt för forskarna att ni redan nu möter er själva, så att strålningsspektrat kan framträda tydligare under fredag och lördag.
Nanonano

Ming Bao på Kristallen på Möllevångsfestivalen


Ming Bao, buddhistisk lärare i meditation och chi-gong på Tao Zen center i Malmö kommer till Kristallens tält på möllevångsfestivalen på fredag kl 19 för att hålla föredrag och visa bilder.
Temat för föredraget:

"I mästarnas fotspår - En pilgrimsresa i det buddhistiska Kina"

Evighetskost och råkost

Fractal Food
Self-Similarity on the Supermarket Shelf

by John Walker



Click on images to display enlargement.

Fractal forms—complex shapes which look more or less the same at a wide variety of scale factors, are everywhere in nature. From the fluctuations in the cosmic microwave background radiation to the coastlines of continents, courses of rivers, clouds in the sky, branches of plants and veins in their leaves, blood vessels in the lung, and the shape of seashells and snowflakes, these fractal or self-similar patterns abound. The self-similarity of most of these patterns is defined only in a statistical sense: while the general “roughness” is about the same at different scales, you can't extract a segment, blow it up, and find a larger scale segment which it matches precisely.

However, some of the most pleasing patterns in geometric art exhibit exact or almost exact self-similarity. These are patterns which are composed of smaller copies of themselves ad infinitum, or at least until some limit where the similarity breaks down due to the granularity of the underlying material.

The Unclassifiable Romanesco

Romanesco Taxonomy
Domain Eukaryota
Kingdom Plantæ
Division Magnoliophyta
Class Magnoliopsida
Order Brassicales
Family Brassicaceæ
Genus Brassica
Species oleracea
Cultivar Botrytis Group

Nearly exact self-similar fractal forms occur do in nature, but I'd never seen such a beautiful and perfect example until, some time after moving to Switzerland, I came across a chou Romanesco like the one above in a grocery store. This is so visually stunning an object that on first encounter it's hard to imagine you're looking at a garden vegetable rather than an alien artefact created with molecular nanotechnology. But of course, then you realise that vegetables are created with molecular nanotechnology, albeit the product of earthly evolution, not extraterrestrial engineering.

Perhaps it's in part due to how alien this vegetable appears that there's so little consensus as to what it should be called. Romanesco (as I'll refer to it henceforth) is a member of the species Brassica oleracea L., which includes cabbage, broccoli, Brussels sprouts, cauliflower, collard greens, kohlrabi, and numerous other “cultivars” (cultivated variations). Plant species are broader and more diverse than those of animals. All of these plants, notwithstanding their gross morphological differences, can and have been crossed, resulting in such innovations as broccolini (a cross of Chinese kale and broccoli) and broccoflower (a cross of broccoli and cauliflower which superficially resembles Romanesco but lacks its near perfect self-similar fractal form). I wonder what you'd get if you crossed red cabbage with Romanesco? Hmmm….

The French name, chou Romanesco literally translates to “Romanesco cabbage”, placing it in the cabbage family even though it doesn't much resemble any cabbage you've ever seen. In German, it's Pyramidenblumenkohl: “pyramid cauliflower”; in Italy, where it was first described in the sixteenth century, it's called broccolo romanesco: “Romanesco broccoli”, but sometimes cavolo romanesco: “Romanesco cabbage”. Finally, in English it's usually called “Romanesco broccoli”, but you'll also see it referred to as “Romanesco cauliflower”. Even professional plant taxonomists can't decide precisely where it belongs; some place it within the Italica group with broccoli, while others argue it belongs in the Botrytis group with cauliflower. Broccoli, cabbage, cauliflower—beats me—let's just consider it sui generis and call it “Romanesco”.

A Computational Universe?

These natural fractal patterns, of great apparent complexity, can be simulated by simple computer programs such as our Terranova, its companion Terranova Screen Saver, and Cellular Automata Laboratory, producing results which mimic those in nature. This tempts one to speculate that nature generates these patterns through a process akin to computation.

It seems like the universe just wants to compute. Of course, there's a tendency for thinkers in every age to model the universe in terms of the predominant technology of the day. To the Pythagoreans, all was number and geometry. In Newton's time, the universe seemed an intricate clockwork mechanism. Later, in the age of steam, thermodynamics and heat death dominated models of the universe. Today, surrounded by computers evolving more rapidly than anything in natural history, what could be more natural than regarding the universe as a great automaton performing some kind of cosmic computation?

And yet, there may be some truth in that viewpoint, and insights to be had by pursuing it, just as earlier worldviews provided frameworks for further discoveries. Stephen Wolfram's A New Kind of Science and Rudy Rucker's forthcoming The Lifebox, the Seashell, and the Soul (excerpt) argue that many of the processes we see in nature are indeed computations.

Wolfram finds that, essentially regardless of details, the results of iterated computations fall into four general (although not entirely exclusive) classes. Class 1 computations produce uniform results from almost any input. Class 2 computations produce output which depends upon the input, but the results either stay the same forever or repeat with a short cycle time. Class 3 computations produce output which appears random (and often passes stringent tests of randomness), while Class 4 computations balance on the edge of order (Class 2) and chaos (Class 3), manifesting localised structures which move and interact with one another in complicated ways. Starting a one-dimensional cellular automaton with random input and various rules demonstrates the behaviour of the four classes of computation.

Class 1: Rule 250
Class 1: Rule 250
Class 2: Rule 132
Class 2: Rule 132
Class 3: Rule 122
Class 3: Rule 122
Class 4: Rule 110
Class 4: Rule 110

Many Class 3 computations produce self-similar or fractal output, which Wolfram refers to as “nested”. The image below is produced by a computer program eight bits in length—the number 126—interpreted to define the new state of a cell based on its current state and those of its two immediate neighbours. The program is started on the the top line of the image, which consists of a single black cell in the middle of the line. Subsequent lines show the evolution as the program is applied over and over, each line serving as input to the line below it.

Wolfram's 1D Cellular Automaton Rule 126

The structure produced by this rule was named the “Sierpiński Gasket” by Benoit Mandelbrot; the same pattern appears in Pascal's triangle of binomial coefficients. Note the intricate nesting of the white triangles; in this small image, eight levels of nesting are present (counting the partial triangle at the bottom). Extrapolated to infinity, an infinite number of nesting levels will be present. Heck of a lot to get from a computer program you can write down as a three digit decimal number, don't you think? Even though this is a simple two dimensional pattern produced by a one dimensional computation, the similarity with the three dimensional hierarchical structure of the Romanesco is compelling.

Stalking the Vegetable with a Camera

These photos were all taken with a Nikon D70 digital camera. The photo above of the entire Romanesco was taken with a NIKKOR AF 28–80 mm zoom lens at 44 mm (note that due to the size of the image sensor in the D70, focal lengths should be multiplied by a factor of 1.5 for the 35 mm film camera equivalent). Lighting was a mix of natural and overhead fluorescent light, arranged (not entirely successfully) to minimise shadows. Exposure was ½ second at f/29.

The close-up photos were all taken with a vintage Micro-NIKKOR 55 mm f/2.8 manual focus macro lens, stopped down to the minimum aperture of f/32 to maximise depth of field; at f/32, the hyperfocal distance is such that everything from the closest point at which the lens can focus to more than four metres is effectively in focus. The first photo below was taken with the macro lens mounted directly on the camera body with a 4 second exposure time, while the balance of the photos used a Nikon PK-12 14 mm extension tube between the camera and lens to permit focusing even closer than the minimum 25 cm object to image plane distance of the macro lens alone. With the macro lens and extension tube, it's possible to focus as closely as 21 cm object to image plane, at which point the front of the lens barrel is only about 7 cm from the object. The extreme close-ups taken with the extension tube required an exposure of 13 seconds at f/32. Fortunately, as photographic subjects, vegetables, even fractal ones, aren't nearly as fractious as supermodels or cows, so such long exposure times pose no difficulty as long as the camera is mounted on a sturdy tripod. All of the close-ups were lit entirely by overhead fluorescent lights.

Images were postprocessed with The Gimp on Linux. Postprocessing amounted to cropping, modest sharpening, and adjusting the colour balance to approximate the actual colour of the vegetable as perceived by the human eye under natural light. When you shoot a photo like the close-ups where the entire field of view is a uniform hue like green, the automatic white balance in the camera will shift the white point to try to adjust the picture toward the white. It's best to disable the automatic white balance entirely, but if you forget to (as I did when taking these shots), it's easy enough to correct after the fact. Yes, a Romanesco is actually the radioactive green colour shown in these pictures. The leaves are a darker blue green typical of broccoli or cauliflower. When cooked, the colour lightens to a less saturated greenish white.

Every self-similar pattern in nature breaks down at some scale—at the level of molecules and atoms if not before. The last photo shows the tiny structures near the top level spiral. As the spirals get smaller and smaller approaching the vertex, the spirals that make them up have less and less lower level detail, with the tiniest being little more than bumpy spheroids.

Fixing Fractal Food

Romanesco is excellent raw, enhancing both the appearance and taste of an assiette de crudités. It's crunchier than cauliflower and not as bland. It has a nutty taste (and looks kind of nutty too until you get used to it!) and doesn't have the chalky edge which some people dislike in broccoli. Any dip that's good with cauliflower and broccoli will go fine with Romanesco, but be sure to try it by itself—you may decide to forgo the dip. It would be absolutely ideal to serve raw Romanesco on a platter with an image of the Mandelbrot set!

Romanesco can be cooked using any method that's suitable for broccoli or cauliflower, and may be substituted in any recipe which calls for them. My personal favourite way to prepare it it to break off the “level 1” spirals (it's easier to do this with the ones at the base if you first cut them loose from the central stem by running a short knife around it from the bottom), then steam them for between 15–25 minutes depending on how crunchy you like your vegetables. Steaming preserves far more of the vitamins in vegetables than boiling, and doesn't tend to reduce their colour to a uniform grey.

If you're counting calories, figure 34 (kilogram) calories (134 kilojoules) per 100 grams of Romanesco, almost precisely the same as broccoli and cauliflower; note that there are as many calories in a single pat of butter! Romanesco is rich in Vitamin C, folic acid, potassium, and fibre. A typical Romanesco weighs between 300 and 600 grams.

References

  1. Mandelbrot, Benoit B. The Fractal Geometry of Nature. San Francisco, W. H. Freeman, 1982. ISBN 0-7167-1186-9.
  2. Rucker, Rudy. The Lifebox, the Seashell, and the Soul. New York: Thunder's Mouth Press, 2005. ISBN 1-56025-722-9. Online excerpt.
  3. Wolfram, Stephen. A New Kind of Science. Champaign, IL: Wolfram Media, 2002. ISBN 1-57955-008-8. Online edition.

måndag 20 juli 2009

Vad menade egentligen Karl Marx?

Alla ni som går och tänker på kopplingen mellan historisk materialism och psykedelia - nu äntligen får ni chansen att reda ut begreppen. På fredag klockan fem i ett av Klubb Kristallens tält på Möllevångsfestivalen i Folkets Park i Malmö (pust...), så kommer Ingmar att hålla ett samtal med oss om detta ämne. Tänk på att det är över 250 anmälda gäster till klubben och att tältet har plats för ca. 15 personer - så kom tidigt.

torsdag 16 juli 2009

Fruktskulptur


Vi har mailat ovanstående vietnamesisk konstnär men inte lyckats få tag på honom. Har du en liknande skulptur liggande, hör av dig till oss.

fredag 10 juli 2009

Psychedelic Fish Crawls With "Legs"

February 25, 2009

In a week that seems full of funky fish comes yet another. I'd like to reintroduce you to H. psychedelica.

(Credit for images: ©David Hall/seaphotos.com)
12514_web

I believe this fish has been "around" in the literature for a while, as I shared a photo a while back, but researchers have just named and fully documented it after analyzing its DNA.

With psychedelica's wild swirl of tan and peach zebra stripes, this denizen of the deep clearly earned its name. It also moves like some people did in the 60's, since researchers have discovered that it doesn't really swim. It instead hops like it's just had whatever was handed out at Woodstock.

This is a fish first.

20090223_pid47501_aid47496_frogfishsits_w600

While other frogfish and similar species are known to jettison themselves up off the bottom before they begin swimming, none has been observed hopping. Each time the newly identified species strikes the seafloor, it uses its fins to push off, expelling water from tiny gill openings on its sides to jettison its body forward. With tail curled tightly to one side –which limits the ability to steer – it appears to bounce haphazardly across the ocean floor.

Adults of H. psychedelica are fist-sized with gelatinous bodies covered with thick folds of skin that protect them from sharp-edged corals as they haunt tiny nooks and crannies of the harbor reef. Fins on either side of their bodies have, as with other frogfish, evolved to be leg-like, and members of H. psychedelica actually prefer crawling and hopping to swimming.

You can see its "legs" in this photo.

12513_web

Theodore Pietsch, professor and curator of fishes at the University of Washington, led the recent research, which is published in the journal Copeia.

The species has a flattened face with eyes directed forward. It's something Pietsch, with 40 years of experience studying and classifying fishes, has never seen before in frogfish. It causes him to speculate that the species may have binocular vision, that is, vision that overlaps in front, like it does in humans. Most fish, with eyes on either side of their head, don't have vision that overlaps. Instead they see different things with each eye.

For more information, images and some great video of H. psychedelica, please visit this University of Washington News site.

tisdag 7 juli 2009

Nya bilder från forskningsstationen


Ännu en bild från laboratoriet har släppts.
Vi ses den 24-25 juli vid kullen i Folkets park.

fredag 3 juli 2009

John Lilly


Här på Klubb Kristallen tänker vi på John Lilly. Han uppfann flyt-tanken. Innan dess var han redan världens främsta forskare på ämnet delfiners intelligens.

In the 1980s he led a project which attempted to teach dolphins a computer-synthesised language. Dr. Lilly laid out the design for a future "communications laboratory" that would be a floating living room where humans and dolphins could chat as equals and where they would find a common language. (wikipedia)

Daniels tyger